
Bluetooth Hacking revisited

+

Kevin Finistere & Thierry
Zoller

23C3 - 2006

Bluetooth – Please just turn it off

Turn off your BT please,

 ,no really.

Yeah

The Goal of this Talk ?

 The Goal of this talk is not to:
 Build myths
 Show off – and not show how

 The Goal of this talk is to :
 Raise awareness
 Make risks (more) transparent
 Paradigm Shift – Bluetooth is not only for toys
 Show cool stuff…

What are we talking about today ?

 [0x00] – Introduction : What is Bluetooth ?
 Sorry this is required. Crash course..

 [0x01] – Get ready to rumble : Extending the Range
 Extending the range of Bluetooth devices
 Building automated reconnaissance and attack devices
 Bluetooth War driving (GPS, 360° Camera)

 [0x02] – Implementation issues : Bypassing Security
 Attacking drivers, Attacking applications
 Owning Bluetooth VNC style
 Attacking Internal Networks and pivoting
 Bluetooth Pin to Bluetooth Passkey

 [0x03] – Protocol/Specification issues : Ceci n’est pas une pipe
 Cracking the Pin and the Link-key (BTCrack)

 Key management, 8 bit Encryption, Collisions
 Tracking the un-trackeable
 Anti-Brute-forcing
 Random Number generators from hell

[0x00] Introduction

 Bluetooth - a few tidbits:
 Operates on the non-regulated ISM band : 2,4Ghz
 In general 79 Channels (Except France, Spain)
 Frequency Hopping (3200/sec, 1600/sec)
 Complete Framework with profiles and layers of protocols
 1 Billionth BT device sold in November 2006 (source SIG)
 Goals : Least cost cable replacement, low power usage

[0x00] Introduction

 The foundation – Protocol Stack

Hardware

Software

Redfang – read_remote_name()

L2ping

[0x00] Introduction

 “Typical” Bluetooth Scenario

Inquiry
Inquiry response

Paging (FHS)
Link establishment

Discovers
Profiles

Bluetooth
Access Point

[0x00] Introduction

 Inquiry - First Contact

 Predefined Hopping sequence
 FHS same for all devices
 Pass Paging parameters during Inquiry stage

[0x00] Introduction

 Paging - Frequency Hopping Synchronization
 Slaves always sync to the Master
 Paging initialisation :

 Slaves hop 1 Channel/sec
 Master hops 3200 times/sec

 Paging
 Both hop 1600 times/sec
 Piconet agrees to a Sequence based on parts

of the BD_ADDR and Clock-offset of the master.
(Nice fingerprint by the way)

 FH is the reason you can not easily sniff BT traffic. You have to sync to the
Master (or use a Spectral Analyzer and reconstruct afterwards – Good luck)

[0x00] Introduction

 The Bluetooth Profiles
 Represent a group and defines mandatory options
 Prevent compatibility issues, modular approach to BT extensions
 Vertical representation of BT layer usage, handled through SDP

Object Push Profile

[0x00] Introduction

 Different Bluetooth modes
 Discoverable modes

 Discoverable :
Sends inquiry responses to all inquiries.

 Limited discoverable:
Visible for a certain period of time (Implementation bug: Sony Ericsson T60..)

 Non-Discoverable:
Never answers an inquiry scan (in theory)

 Pairing modes :
 Non-pairable mode :

Rejects every pairing request (LMP_not_accepted) (Implementation bug: Plantronic
Headset..)

 Pairable mode :
Will pair up-on request

[0x01] Get ready to rumble

 Extending the Range

[0x01] Get ready to rumble

 Long Distance - Datasets
 Antrum Lake, water reflection

guarantees longer ranges.
 788 Meters
 An old Man stole my phone
 during this test! I tracked
 him with the yagi.

[0x01] Get ready to rumble

 Optimizing for Penetration (1)
 Integrated Linksys Dongle
 Integrated USB Cable
 Metal Parabola
 10 * Zoom
 Laser (to be done)

 Experiment : Went through a building found the device on
the other side IN another building.

[0x01] Get ready to rumble

 Optimizing for Penetration (2)
 Bundling (Parabola)
 Higher penetration through walls
 Glass is your friend
 On board embedded device. (NSLU2)
 Autonomous scan and attack toolkit

 automatically scans
 may attack devices
 saves all the results

[0x01] Get ready to rumble

 PerimeterWatch – Bluetooth Wardriving
 Perl Script by KF
 Searches Bluetooth Devices
 Takes 360° pictures
 GPS coordinates

[0x02] Implementation bugs

 Implementation Bugs – Bypassing security

[0x02] Implementation bugs

 Menu du Jour :
 Eavesdropping on Laptops/Desktops
 Remotely controlling workstations
 Car Whisperer NG
 Owning internal Networks over Bluetooth
 Linkkey theft and abuse
 Widcomm Overflows

(Broadcom merger leaves lots of vuln users that can not patch) BTW
3.0.1.905 (../ attacks) and up to BTW 1.4.2.10 has overflows

[0x02] Implementation bugs

 Bluetooth PIN is really a Bluetooth Passkey
 Did you know ? A Bluetooth “Pin” can be more than digits…
 Not aware of any implementation, all use just digits
 Uses UTF8
 Max 16, UTF8 char may take some off

 Example :

 It’s like implementing NTLM with digits only….
 BTCrack would a lot more time if this would be “correctly” implemented

0xC3 0x84 0x72 0x6c 0x69 0x63 0x68Ärlich

0x30 0x31 0x032 0x330123

BT handles User enters

[0x02] Implementation bugs

 CarWhisperer – Martin Herfurt
 Listen and Record Conversations
 Not that new, but what’s new :

 Works against Workstations
Example : Widcomm < BTW 4.0.1.1500 (No Pincode)

 Kevin did a real-time patch for it
 Remove the Class ID check

 Root Cause :
Paring mode, discoverable, hard coded Pin.

[0x02] Implementation bugs

 HidAttack - Owning Bluetooth VNC Style
 HID = Human Interface Device
 Requires 2 HID (PSM) endpoints to act
 as server
 2 implementations :

 Keyboard connects to the HID server
 HID server connects to the Keyboard

 You can control the Mouse and Keyboard HID just as you were in
front of the PC.

 Discovered by Collin Mulliner , fixed in hidd Bluez <2.25, Widcomm,
Toshiba not really tested. Yours?

 Code release today : www.mulliner.org/bluetooth/hidattack01.tar.gz
 Thanks Collin !

http://www.mulliner.org/bluetooth/hidattack01.tar.gz

[0x02] Implementation bugs

 Demo - Owning internal networks
 Apple

 OSX 10.3 Tiger
 OSX 10.4 Jaguar

Vanilla, delayed release
 Windows

 Widcomm, Toshiba,
Bluesoil, others ?

 Pocket PC

 Kevin: Apple asked me to not tell 10.4 was shipping vulnerable
 OSX 10.3.9 patched, OSX 10.4 shipped vulnerable patched a month

after OSX 10.3.9

[0x02] Implementation bugs

 Demo – Remote Root over BT
 Vulnerability shown :

Directory Traversal in un-authenticated
Obexserver (Patched)

 Cause :
User input validated client-side (except btftp)

 ObexFTP server directory traversal exploit & malicious InputManager & local
root exploit = remote login tty over rfcomm = 0WNAGE

 Was possible on Windows and Pocket PC and everything that has Toshiba or
Broadcom & Widcomm (estimate 90%), and most probably others too. But we
choose a MAC, because…we can.

 Points are :
- Macs are NOT invulnerable (far from that) - You can own internal networks
over Bluetooth

[0x02] Implementation bugs

 Windows Widcomm - Buffer overflows

[0x02] Implementation bugs

 Windows Widcomm - Buffer overflows

 Vulnerable versions known to us :
 Widcomm Stack up to 3.x is vuln
 Widcomm BTStackServer 1.4.2 .10
 Widcomm BTStackServer 1.3.2 .7
 Widcomm Bluetooth Communication Software 1.4.1 .03
 HP IPAQ 2215
 HP IPAQ 5450

[0x03] Protocol issues

They are just
implementation

Bugs*

*This is supposed to be a joke

[0x03] Protocol issues

 Menu du Jour :
 Why the Pin is not that important
 Unit Keys
 How to find non discoverable devices
 Random Number generators that may be from Hell
 Link Keys

 Reconstructing them
 Abusing them
 Re-force Pairing, Corruption

 Denial of Service

[0x03] Protocol issues

 The PIN is not really that useful
 The link key is !
 Here’s why :

 Pairing mode required for PIN
 The LK is enough to authenticate
 Encryption (E0) calculated from

the LK
 We can authenticate against both

sides with the same key

 Protocol 1.2 Authentication :

[0x03] Protocol issues

 Unit keys
 Generated by the device when starting up
 Based on a PRNG that may come from hell
 Permanently saved and cannot be changed
 Only has one key

 Problem :

 The SIG clearly does not recommend it’s use.

A B

Step1

A C

Step2

[0x03] Protocol issues

 How to find nondiscoverable devices passively

 From the man himself: Joshua Wright
 We knew read_remote_name(), now l2ping.
 Target : BD_Addr : 48-bit

4. Sniff on a preset channel and wait for devices to hop by , capture
the Bluetooth Preamble, extract the cannel access code (which
is based on 24 bits of the BD_addr)

5. Extract Error Correction field (baseband header – CRC 10bit
field)

6. Assume the first 8 bits 00
7. Brute force the remaining: 8bits

00:11:9F:C5:F1:AE

[0x03] Specification issues

 Random Number Generators from Hell

 Specification is not very clear about what to achieve or how to achieve
it

 The specification reads :

Each device has a pseudo-random number generator. Pseudo-random
numbers are used for many purposes within the security functions − for
instance, for the challenge-response scheme, for generating authentication and
encryption keys, etc.

Within this specification, the requirements placed on the random
numbers used are non-repeating and randomly generated

For example, a non-repeating value could be the output of a counter that
is unlikely to repeat during the lifetime of the authentication key, or a
date/time stamp.

[0x03] Specification issues

 Random Number Generators from Hell

 Remember the Clock inside each Device ?
 Remember that we can get the clock-offset with an simple non-authenticated

inquiry ?
 RND do not look very random, had no time left to investigate fully, looks

horrible.

 They don’t trust it themselves :
The reason for using the output of and not directly
choosing a random number as the key*, is to avoid
possible problems with degraded randomness due
to a poor implementation of the random number
generator within the device.

*What a great idea that would have been…

[0x03] Protocol issues

 Introducing BTCrack
 First presented at Hack.lu 2006
 Released for 23C3
 Cracks PIN and Link key
 Requires values from a Pairing sniff
 Imports CVS Data

Available for download here now:
http://www.nruns.com/security_tools.php

http://www.nruns.com/security_tools.php
http://www.nruns.com/security_tools.php
http://www.nruns.com/security_tools.php

[0x03] Protocol issues

 History
 Ollie Whitehouse - 2003

 Presents weaknesses of the pairing process and how it may be used
crack the PIN

 Shaked and Wool - 2005
 Implemented and optimised the attack
 Found ways to re-initiate pairing

 Thierry Zoller – 2006
 Win32 implementation, first public release
 Tremendous help from somebody that will recognize himself

[0x03] Protocol issues

 Speed - Dual-Core P4-2GHZ

 BTcrack v0.3 (Hack.lu)
 22.000 keys per second

 BTcrack v0.5
 47.000 keys per second

 BTcrack v1.0
 Thanks to Eric Sesterhenn

 Optimised for caching,
cleaning code, static funcs,
removing Junk

 ICC
 185.000 keys per second

Results :
• 4 digit pin : 0.035 seconds

• 5 digit pin : 0.108 seconds

• 6 digit pin : 4.312 seconds

• 9 digit pin : 1318 seconds

[0x03] Protocol issues

 BT Crack – Behind the scenes (1)

Step1
Generates (RAND)
K = E22(RAND, PIN, PIN_LEN)

Device A Device B

Step1
K = E22(RAND, PIN, PIN_LEN)

Rand

Step2
Generates (RANDA)
CA = RANDA xor K

Step2
Generates (RANDB)
CB = RANDB xor K

CA

CB

Step3
RANDB=CA xor K
LKA=E21(RANDA, ADDRA)
LKB=E21(RANDB,ADDRB)
LKAB=LKA xor LKB

Step3
RANDB=CA xor K
LKA=E21(RANDA, ADDRA)
LKB=E21(RANDB,ADDRB)
LKAB=LKA xor LKB

Step4
SRESA =
E1(CH_RANDA,ADDRB,LKAB)

Step4
SRESB =
E1(CH_RANDA,ADDRB,LKAB)

CH_RANDA

SRESB
Step5
SRESA = SRESB

E22 = Connection key
E21 = Device key

[0x03] Protocol issues

 BT Crack – Behind the scenes
Pin =-1;
Do
{

PIN++;
CR_K=E22(RAND, PIN, length(PIN));
CR_RANDA = CA xor CR_K;
CR_RANDB = CB xor CR_K;
CR_LKA = E21 (CR_RANDA, ADDRA);
CR_LKB = E21 (CR_RANDB, ADDRB);
CR_LKAB = CR_LKA xor CR_LKB;
CR_SRES = (CH_RAND, ADDRB, CR_LKAB);

}
 while (CR_SRES == SRES)

 Right : Shaked and Wool logic
 Top : Pseudo code by Tomasz Rybicki
 Hackin9 04/2005

[0x03] Protocol issues

 BT Crack – Demo

[0x03] Protocol issues

 Link keys – What can I do with them ?
 Authenticated to both devices Master & Slave with the same link key
 Dump them from any Linux, Mac, Windows machine
 Create a encrypted hidden stealth channel, plant the linkkey
 You can decrypt encrypted traffic with the linkkey

 How to force repairing ?
 Shaked and Wool proposed:

 Injection of LMP_Not_Accepted spoofing the Master
 Before the master sends Au_rand, inject In_rand to the slave
 Before the master sends Au_rand, inject random SRES messages

 We propose :
 Use bdaddr to change the Bd_Addr to a member, connect to the master

with a unknown linkkey.

[0x04] Kick-Out

 Sooooo now we have :
 A quick and reliable way to get the BD_ADDR
 A way to crack the Pin and the keys

 What's left ?
 The sniffer. It costs around 13.000$, you can get it on eBay

sometimes for the 1/10 of the amount.
 Assignment : Go and make one for everybody.

[0x04] Kick-Out

 Things to Remember :
 Bluetooth might be a risk for your Company

 Risk assessment is rather complex
 Don’t accept every file you are being send, just click NO.
 Disable Bluetooth if not required
 Pair in “secure” places (SIG Recommendations)
 Don’t use Unit Keys
 Hold your Bluetooth vendor accountable for vulnerabilities
 Delete your pairings
 Use BT 2.0 and “Simple Paring”

